
EGEO:

An ENGINE in the Grid for the Earth Observation

V.M. Fulcoli, R. De Prisco, et alteris ex ESA-ESRIN
DISP, Uni. Tor Vergata, Roma; dip. Informatica Uni. Salerno, Fisciano, IT; ESA-Esrin Frascati, IT

Jan 16, 2006

Abstract

Today GRID is a sector of the IT research that covers a growing number of ideas and resources.
It tries to exploit in the best way the synergy between distributed computers on the web using a
set of protocols and services.

The gains in this sense are related to how simply can we reach compromises in order to achieve
the optimal status between many aspects playing significant roles.

Scientific aspects (to elaborate a great data set in a dynamic context that needs data migra-
tion or replication and the subsequent program, fine-tuned modified, migration for the best site
discovery) that I will analyze in order to obtain an increase in the calculus procedures have really
been implemented in a system now operating at ESA. The system I studied have an evolution
perspective pointing to integrate very different techniques, and my target will be to merge the
common program with an intelligent GRID using 2 elements: The GridEngine and the jobFlow.

Objective for this task is the ”intelligent Job” that is able to interact with others Job-entities
of its same nature. The Job is the fundamental and the GridEngine is a meta-system added on
Grid. The EGEO is a production environment in which this overlap is concretized trough the
Grid onto Earth Observation.

keywords: Grid, GE-Job, job flow, program, gridization

1 Introduction

Grid Computing 1 in the last period is becoming a paradigm for a new calculus generation: it allows
the sharing and the merging of several heterogeneous resources spread and distributed among the
www.net; supplying it with a real-time discovery of the best fitting computer or resource.
Grid is intended to allow the resources exploitation by users that can log on. The Grid concept arises
immediately after the computer network; network services enable the simple communication, grid
services offer a whole intercommunication environment for applications.
It is useful to notice that a Grid is a computer network, but a computer network is not a Grid.
The Grid components operate in several scenarios that sometimes replicate themselves with similar
operating modes: the case of a process execution hosted by a remote machine. The Grid use typically
has a Grid Interface that addresses the user in the different operations. Once the program is chosen it
is uploaded on the Grid with execution’s parameters specification and location of data to be analyzed.
The Job so built is submitted to the grid and through the UserInterface it is possible to trace the log
of the states reached by the Job during its execution.
A more evolved Grid vision leads to a growing in scenarios complexity. There can find place Brokers
of resources or a pool of Brokers, Virtual Organization Management Systems (VOMS).
The GridEngine is the response to a problem focused in ESA 2 on the Mosaic-Image-Elaboartion. The
Mosaic is a program that reading Meris 3 files operates a reference map (a sort of reticulation of the

1 I. Foster, C. Kesselman, S. Tuecke, : ”The Anatomy of the Grid - Enabled Scalable Virtual Organizations” , in
”Supercomputer Application”, 2001

2http://www.esa.int/esaCP/index.html
3http://www.esa.int/esaEO/SEMZ538X9DE index 0.html

1

2 A new Grid Job Engine

geographic region covered by the file), then elaborates images and on a correlation between spatial
overlapped pieces of different images puts on the best fitting. Then collects the various tiles in one
big result.
The crucial points of the solution to the Mosaic are:

1. An automatic gridization of the Job

2. The introduction of the minimal intrusion in the computational program

In the second point we used methods often adopted by parallel-computation, in the first instead there
are techniques that you can find in the modern object oriented language programming.
An ulterior advantage raised up from this research: the GridEngine offers to computational programs
the possibility for the exploitation of grid resources made synergic in a logic level more complex that
enters in a Task flow organization logic. The capacity of traduction into a complex abstract language
the whole operations chain, in which each operation is a gridEngine-Job gives a decrease in the whole
difficulty for the final task in a distributed concept.
The GridEngine is an add-on for the Grid, it is applied onto the interface between Grid and whole NET.
GridEngine raises the UserInterface intelligence allowing a quick insertion of a Job: an operation that is
the main aspect for the research. The different Grids available now (as like projects or as implemented
versions) either from the operational than from the architectural point of view were oriented towards
the inner services (related to an increase of grid services functionality) and not towards the grid and
the final user.
The computational software gridization is a complex operation that requires specific elements knowl-
edge in order to be done. This is the crucial aspect of the research: a simplification for the gridization
that does not decrease the total efficiency of the system.
On the basis of the Mosaic Project now in ESA it is being developed a plan of systematic exploitation
of Grid resources and machines that operate in different fields: they are about 30 applications that
use GridEngine, and its number is in a continous growing.
The fact I want to emphasize is that to obtain the ”gridization” of the computational application you
do not have to know deeply the Grid below. In fact once the whole system (composed by GridEngine
and the various Grid-middleware and services) is correctly setted, the only constraints to be fulfilled
are constituted by few simple rules: the whole complexity of the gridization is moved from here into
a decoupled task that is performed only one time by the GE-Job builder.

2 The Grid and the status of the art

Grid is a model that takes advantage of many networked computers to model a virtual computer
architecture that is able to distribute process execution across a parallel infrastructure or distributed
infrastructure. Grid uses the resources of many separate computers connected by a network to solve
large-scale computation problems either relating to a spread data set that follows from large data
sets after breaking them down into many smaller ones, or providing the ability to perform many
more computations at once than would be possible on a single computer, by modeling a parallel task
sub-division between processes.
The Grid-computing is a conceptual framework rather than a physical resource. It is an approach that
if utilized provides for the computational task with distant resources. The focus of Grid techniques
is associated with the issues and requirements of flexible computational provisioning beyond the local
domain.
An aspect that decouples Grid computing from distributed computing is the abstraction of the resource
from distributed into Grid-aware. As result of this abstraction we can more easily accomplish a
resource substitution. Some of the overhead associated with this flexibility is shifted in the middleware
layer and in the temporal latency that has to be evaluated in terms of the impact on performances
employing a Grid resource.
It’s conceptual framework is evolving with a high rate, and the business side is involved in the commer-
cialization, the science side is actively addressing the development environment and resource monitor-
ing aspects. Activity is also addressed in providing grid versions for the High Performance Computing.

V.M. Fulcoli, R. De Prisco,....et alteris 3

That environment is created to address the resource-usage that usually is characterized by its avail-
ability outside of the context of the local domain, and so an external provisioning approach creates a
new administrative-domain: Virtual Organization with a distinct and separate set of administrative
policies. The Grid job execution is distinguished by requirements created when operating outside of
the local context, and a job is aiming to facilitate formalization and complying with the Grid context
associated with the application execution.
There are now many projects related to the Grid technologies, characterized by several different
aspects. If we consider as distinctive element the application field of the Grid we have the classification:

1. Computational Grid

2. Data Grid

3. Services Grid

If we focus our seeing in the manner the Grid is available to the final user then a classification could
be, in a bottom-up style:

1. Middleware-Core

2. Middleware-User

3. Grid-Systems for Applications

4. Grid-Systems integrated

Among these projects, some concentrate on the development of software tools or services, others
optimise the underlying network while others get ready for different scientific applications.
Each single project often covers more then one area of research, so a clustering of them could be:

1. Technology : involved in development of Grid-enabling technology

2. Testbed : oriented to developing and maintaining a production testbed with the existing Grids

3. Specific applications : oriented to exploration and harness of grid technology in some fields of
science

4. Portals : Internet portals to grids, like grid on Demand

Technology
The EGEE-Grid Project endevours to develop the next generation of scientific exploration, task that
requires intensive computation and analysis of shared large-scale databases, thousand of Terabytes,
across distributed scientific communities. This project covers also the section related to testbed.
The Globus Project is developing fundamental technologies needed to build computational grids. It en-
ables software applications to integrate functionalities, tools, computational and information resources
that are managed by diverse organisations in widely distributed locations, including investigations for
the security, the resource management, the communication protocols and the data management.
The Biogrid project strives to develop a series of analyzers on a network of supercomputers, allowing
safe linkage and manipulation among various types of huge databases and facilitating systematic link-
age among data processing requiring ultra high-sped computing resources, via ¡data grid technology¿
for the first and ¡computing grid technology¿ for the last one aspect.
Condor Project develops mechanisms that support High Throughput Computing on large collections
of distributively computing resources, it is a workload management system for compute-intensive jobs.
Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling, priority
scheme, resource monitoring and management. Users submit their serial or parallel jobs to Condor
that places them into a queue, chooses when and where to run the jobs based upon a policy, monitors
their progress, and ultimately informs the user upon completion. Condor-G, a fully interoperable tools
with resources managed by Globus, incorporates many of the emerging Grid computing methodologies
and protocols.

4 A new Grid Job Engine

The CrossGrid aims to develop services and programming tools for Grids in a large-scale domain,
either with real-time simulations and visualisation in the fields of physics, earth sciences and medicine.
GRACE investigates for a distributed search and categorization that will produce an engine that en-
ables just in time allocation of data and computational resources. It handles unstructured informations
that are typically handled by search engines.
TestBed

The DOE Science Grid. It is building an advanced distributed computing infrastructure based on
Grid, enabling the scalability in scientific computing.
AstroGrid builds up a working data-grid with associated data-mining facilities. A virtual observa-

tory capable of supporting efficient exploitation of astronomical sets of data. Astrogrid will give a
contribution to the Global Virtual Observatory.
GridPP. A collaboration of Physicists of high Energies and Computing Scientists who are building a
Grid for Particle Physics. The main objective is to develop and deploy a large-scale Grid intended to
be used by the worldwide particle physics community.
Teragrid is a project born to build a large, fast, and distributed infrastructure for open scientific re-
search.The TeraGrid will include a great ensamble of computing power distributed at five sites, capable
of managing and storing nearly 1 petabyte of data and toolkits for grid computing. These components
need to be integrated and connected through a network that will operate at 40 gigabits/sec. .
Specific applications

There is GriPhyN, a project that merge information technology and experimental physics to provide
the IT advances required to enable Petabyte-scale data intensive calculations.
PPDG has the purpose of enabling a distributed computing model for the high-energy and nuclear
physics experiments. PPDG is actively participating in iVDGL together with GriPhyN for an ap-
proach to data grids for physics experiments.
The iVDGL. A Data Grid that give functionalities and tools to experiments for physics and astronomy.
Share a computing, storage and networking resources across U.S., Europe, Asia and South America
providing a unique laboratory.
Portals
GridOnDemand. A running project, largely operative in ESA, that allows the use of videly distributed
resources, focused in a Data-Grid sector. it has a GateWay that serves as a preliminary logic package in
order to collect informations useful to run Grid-Engine Jobs, as flows in a Task concept. It is thought
for the earth-Observation applications bases itself on the inner layer constituted by the Grid-Engine
Grid tool.
GRIDSTART has the goal of consolidating technical advances in the research of Grid-enabled appli-
cations. The www-site serves as a portal to a diverse collection of activities and initiatives taking
place in Europ and in the United States.

3 A brief description

The field in which most Grid project express their power is the numerical computation: they points
to the massive resources exploitation in order to minimize calculation latency. From a different point
of view we can see the valence of Grid: to adjust the system in order to give the intelligence to
the computational algorithm that will interoperate with the underlying grid middleware. It is a new
entity, the GridEngine Job that is capable either of using the grid services than of interacting with its
similar GridEngine Job, or maybe to recall from those some functions.
To exploit Grid services I added to the middleware (mostly of them a dataGrid like) on that User-
Interface that is the gateway a new set of functionalities, embedded in a System and described by a
protocol, to obtain an automatic insertion onto Grid of various applications tuned for the stand alone
usage.
From previous paragraph you can see how the grids base their strength on their back side. I have
never seen a particular attention devoted to:

V.M. Fulcoli, R. De Prisco,....et alteris 5

1. give an ontological description of the application to be executed on the grid;

2. give to the Job its own identity and searching those conditions in which there are similar oper-
ational aspects;

3. facilitate the program introduction in the grid environment without intrusive operation on the
code, only wrapping it in a new middleware optic, a facility that leads to the automatization of
computational programs grid insertion;

4. allow to those programs, so wrapped, a cloning therapy to obtain a parallelism or symmetric-
strong or symmetric-textual. The resulting application (the Grid Engine JOB that I will de-
scribe) could be cloned by using some uncostrained degrees of freedom, in such a way to make:
• A strong symmetry, even starting from an internal tasks redistribution, and data to be pro-
cessed;
• A textual symmetry that relies to a different role of the program, respecting differnt costraints;

Those clones communicate between themselves through the GridEngine that acts as a ”glue”. All
that obtained with no intrusion in the logical scheme of the algorithm.
This approach is a solution to a problem. In ESA researchers work on great data sets, obtained by
satellite observation and spread on the Earth in several stations, with different archive systems. To
elaborate these data we used a traditional approach: the single machine computation, serially. The
data (known as products) have a level description: from P liv 0 directly acquired by satellite sensor,
to those affected by trasformations (for example geolocation operations give level 1 products P liv 1
by particular algorithms ¡G¿), so we can express the serial computation on stand-alone machines as
the one that elaborates data at each time, and the result on a set of k data (D) incoming has a total
cost (¡S¿) sum of single costs

< S >tot=< G >
∑

i,(0−k)

Di =
∑

i,(0−k)

< Si > (1)

This cost is augmented because data are fragmented and must be collected onto the host machine for
the computation, moreover the result cannot be stored on computing element but has to be moved
on a storage. So, taking in account these factors, parametrized by α and β linearly to the data files,
we have:

< S >tot=< G >
∑

i,(0−k)

Di +
∑

i,(0−k)

αDi liv(n) +
∑

i,(0−k)

βDi liv(n+1) (2)

Now if the computer is only one it’s clear that the cost is a waiting time, and the summation on single
costs is a summation on single waiting-time per single-data:

< T >tot=< G(t) >
∑

i,(0−k)

Di +
∑

i,(0−k)

α(t)Di liv(n) +
∑

i,(0−k)

β(t)Di liv(n+1) (3)

To reduce the total wait it is necessary to act on all 3 therms.

• For the first term
< G(t) >

∑
i,(0−k)

Di (4)

we must operate in the direction of spread costs on several computers, so avoiding the serial
elaboration and preferring the parallel one;

• For the 2 remaining terms the solution is contained in the preceding one: a multiple elaboration
on those machine where the transfer cost were the lowest. So we reduce the total wait.

To this end we use the grid as middleware system that hosts the tasks, addressing them on available
nodes (and minimizing the total cost). But now arise a problem: the treatment of first term need an

6 A new Grid Job Engine

adjunctive cost related to the computational program transformation; from single-machine to grid-
aware. That cost is not heavy but it assumes a deep user knowledge of the grid middleware, operating
constraints and insertion procedures (often a class-ad or jdl job-definition-language).
Subsequently to that there is the problem related to data arising from a precedent elaboration:

G[Di livk] (5)

where
Di livk (6)

is a product from data produced by

G[Di liv(k−1)]; (7)

G[< G > Di liv(k−1)]; (8)

and with a multiple recurrence:

G[G[< G > Di liv(k−2)]]−− > Gk[Di liv0] (9)

or, in the limiting but more frequent case, where the recurrency is not always made by same operators
but made by an operator’s class :

G[G..[H..[< I > Di liv(k−2)]]]−− > GjHgI l[Di liv0] (10)

where the operator is expressed by latin Uppercase (G) and relative costs by the ¡¿: ¡G¿.
Now we can see how the wait evaluation has become more complex in the reason that the cost is
strongly related to the user’s ability to retrieve, as soon as they are produced, the results of an
intermediate computation; noticing that several operations could have common characteristics and
the remaining could be completely different among themselves. This means that we must repeat the
job description procedure for each computation, either in the case there are parameters unaltered and
in the case they vary and are fixed by preceding operations. So, a procedure of the kind:

< Gα > [< Gβ > Dgeneric]; (11)

implies a cost :

< Gα >< Gβ >=< Gα > [Di]+ < Gβ > [Di+l]+ < O > [Di][Di+l]; (12)

where the last term in the second member takes in account the data D transfer cost, data D produced
by Galpha algorithm versus Gbeta. So it appears how the optimal case is that in which cost factors for
an O transfer are null. In the other way it get worse by intrinsic waiting times (related for example to
the transfer throughput) and by human waits related to the user’s quickness in the products transfer.
The goal of the GridEngine is to minimize these costs with the introduction of the Grid-Engine-Jobs
that have their own autonomy and substitute the user in the data analysis description procedure,
they moreover can tie together in a chain to implement the serial recursive elaboration. The result
has a great effect. Only one job description and the GridEngine will build the whole set of G-E-Jobs
for each application of that field. Moreover the GridEngine operates a linked execution of GEJobs
monitoring each grid execution. The GridEngine is highly modular so we can adapt it to different
grid middleware systems just with little modifications made on the lower layer.

4 The contribution of this research

A GEJobs manager (the GridEngine) and the EarthObservation as the application field, point to a
system fully featured as the GridOnDemand web Portal. With this job we analyze technical advanced

V.M. Fulcoli, R. De Prisco,....et alteris 7

Figure 1: The Modular structure of the GridEngine system

solutions to hide the complexity of grids to scientists, having in mind that the focal point is to prepare
a plan of development and integration for grid technologies that will preserve the computational
applications’ independency from grid-systems. The greater contribution that we will give in this work
is the synergy optimization between applications and grids without modify the application itself, but
giving to the grids an add-on (the GridEngine) that increase the complexity of the Interface GateWay
between the grid and the external world (the POA:point of access). Then the GridEngine is able to
manage operation flows (i.e. Tasks) built by GE-Jobs, linked in such a way to form joined distributions
evolving to reach some particular and well defined conditions.
Each GE-Job can clone itself to migrate on the grid for a load balancing, and each clone can:

1. communicate with similar clones to exchange production informations;

2. invoke remote methods on different GE-Jobs to obtain informations (i.e. on the actual status
or operation doing);

3. send new elaboration request (ex novo) to new GE-Jobs dynamically created on the fly;

After a long research of current grid projects and systems we noticed that never in them was been
considered with particular attention the aspect l̈ess grid-awarë: how an application can exploit the
grid without suffer drastic invading operations at its structural level. For many projects the main
feature is to offer inner services as distributed and functional as possible. For others the leading aspect
is to reach the greatest grid-resources exploitation, but in these middleware systems it is developed a
fine tuned compiling model for the computational program (i.e. the basic algorithm is broken down
into pieces to be relinked again).
The GridEngine is a new service for the grids that is completely user oriented, acting as a generic grid
service, in such a way to automate the complex grid insertion for applicative programs. It is a server
listening on SOAP protocol for external requests (by users or remote programs as we will see later for
the EGEO GridOnDemand) 1 and it manages GE-Jobs for splitting, cloning, inter-communication,
remote call capability on alive GE-Job objects.
We investigated and realized a theoretical approach to the formal declaration of a GE-Job as an
abstract class that could be instantiated (like the modern object oriented languages). The final
scenario is a GE-Job Task that acts as real program that is executed on the grid; it has its main
method from where new objects are created on grid, and each new object could be either a service
provider or a GE-Job of the chain. So we have created a new meta-language for the grid, used
by scientists to utilize in a transparent way the whole services grid-set. Further aspect is that the
GridEngine is independent from underlying middleware.
With a 3 layers stratification we decoupled the GE-Job manager (residing at the upper layer) from
the grid by the insertion of 2 intermediate layers, resembling the common concept of the ISO-OSI
stack.
Inside a VO there are circumstances in which periodically a Job is executed without relevant changes,
so we identify among these GE-Jobs a common unchanged parameter set as the intersection-set :

ZC = Jobk ∩ Jobl ∀k, l ∈ {GRID} ZC 6= 0 (13)

1EGEO GridOnDemand web Portal : http://giserver.esrin.esa.int/grid-dev/service/index.asp?

8 A new Grid Job Engine

Figure 2: The GridEngine and the GE-Job with the middleware and abstract classes

This set identify a class : an abstract entity that once instanced becomes a GE-Job. The free
parameters belong to 3 different levels:

1. strict-applicative acting directly on computational programs;

2. wide-applicative acting on the GEJob object;

3. generic acting at a middleware grid level.

When computational programs need to become grid-enabled we wrap it into a job pilot program that
drives its execution on the computing element and fixes some status advancing points useful for the
GridEngine in order to control the job execution.

Figure 3: The computational program in its InBox and OutBox abstract scenario

The OutBox is composed by output and error process channels, by the OutputDATAset : the produced
result set, OutputTable : a describing table for the OutputDATAset, with data description or metadata

V.M. Fulcoli, R. De Prisco,....et alteris 9

or urls. The InBox is composed by input process channel, by the file Arguments resembling the
argv[] parameters array, by the InputDATAset that comprises the whole data set to be processed, by
InputTable that describes the InputDATAset as the preceding OutputTable, and the Environment
hashTable that is a variable-value list for the environment parameters requested by process.
The GE-Job abstract class is built on the core-program, absolutely identified as regards to its archi-
tecture and linking factor to the stand alone host computer. The GE-Job class description is made
through an XML file listing all object’s methods and attributes shown to users, in a qualitative and
quantitative description. A GE-Job has 4 basic statement parts:

1. Preparation: the phase in which all contextualizing operations and pre-conditions actions are
developed;

2. Execution: (aka wrapper) effective execution of the created instance GE-Job on the grid mid-
dleware;

3. Completion: of the running processes and results collection followed by the run-time environment
cleaning;

4. Status: describing the advancing point reached by running wrappers.

The XML must be of the form:

Figure 4: The XML description for the GE-Job config.

10 A new Grid Job Engine

Figure 5: The GridEngine in the layered complexity abstraction. From the middleware to the user in
a top-down view.

Each component of the GE-Job object in the abstract class representation is really a template file
that is implemented and instantiated by the GridEngine during the init step. We define 3 template
kinds:

1. Static : it’s part of the Input archive anyway, and can be a pilot; it is not copied in the GE-Job
Local working Directory but is directly uploaded on the grid during preparation phase;

2. Template : the generic skeleton file to be defined; it is instantiated and copied from Template
directory to Working Directory. Normal is only instantiated, an Exec is also executed in the
wDir work-space. Method is callable by remote requests on the GE-Job object.

3. Virtual : not appearing in the GE-Job class repository, but created on the fly by local operations.

The pilot program is part of the archive to be uploaded and is the driving wrapper program to the
computational application that must be run remotely. Notice that the word Remote (or Remotely)
stands for operations to be executed on the grid computing element, while Local (or Locally) stands
for operations made on the grid gateWay machine.
At this point the similitude between GE-Job and Object Oriented language’s (like Java) object is
clear. We can create a GE-Job object and invoke methods on it. It becomes part of a greater schema:
the Task, in which we collect many GE-Object in a chain of operation, controlled by the GridEngine
in their evolution. This is the EGEO meta language with whom it is possible to build many job flows
in which each atomic piece makes the pre-conditions for the subsequent (there could be one or more)
GE-Job.
From this point of view the GridEngine is a meta-service for the Grid. A service is an entity able to
accomplish specific tasks. A web service define methods and technics in a key distributed schema
paradigm: representing software components visible by users, showing the way users can utilize them
and how to identify these functionalities. A grid Service is a web service that offers a well defined
interface set which help in the identification, dynamic creation, life monitoring, event notification and
monitoring; its protocol provides scalability and nomenclature. The Meta service here offered by
the GridEngine is a grid Service with the difference that this last works on system and grid resources
while it works on GE-Jobs, that in their turn operate on system and grid resources.

5 The GridEngine and the GE-Job

The GridEngine is basically a GE-Job manager. It has 4 principal blocks: the GE-Job and session
managers, the system manager and security controller.

V.M. Fulcoli, R. De Prisco,....et alteris 11

Figure 6: The GridEngine and the principal components.

To describe the GridEngine we analyze a real case: the remote elaboration request for a GE-Job.
The user could be either an external client (i.e. the GridSurfer we made that is optimized for the
GE-Job service test), or an external service that uses the GE services (in fact the GridEngine offers
a GateWay to the grid not only for the GE-Jobs communication, it could monitor several middleware
aspects), or a GE-Job itself that invoke GridEngine’s services during its operational phase. The
first step is the client’s identification through credentials. Then the client creates a work session,
managed by session manager, that stores all client credentials and all the GE-Job objects that the
client arranges in the operation plan (i.e. the so called progamming meta language). Then a GE-Job,
referring to a particular session, correctly instantiated is in its initial state and could be executed if
the preparation step ends successfully. The Job’s submission via the GE launches the computational
process on the computing element and the job status informs the client on its progress and middleware
status of the pilot. To the execution’s end follows the job completion. All these operation can be
launched one by one by client or automatically by the GridEngine, that starts the subsequent operation
when the preceding and propaedeutic one is reached. All the informations related to these particular
status progresses are called checkPoints and are fixed in the GE-Job definition: each running GE-Job
advances in its task and informs the GridEngine when reaches its next checkPoint.
This double mechanism is useful when the client needs to test the various GE-Job, so he can monitor
step-by-step, and when he then uses the GE-Job as operative. Besides Preparation, Wrapper,Complete
and status, there are also the :

1. Stop, acting first on the middleware process and backward to the Local GE-Job process;

2. Clean. As the prededing one it operates backward cleaning all the GE-Job’s files and informa-
tions.

3. Job Get Up, tries to stop the current GE-Job and a following restart from the last reached
checkPoint.

The checkPoint is a point in the state-space for the GE-Job, and represents a well defined stage from
where it is possible to restart the task.
The following schema illustrates a possible status flow for a GE-Job in its state space.
A set of GE-Job in a session is viewed as a task: it simulates a Chain in a job-Flow driven by the GE
meta-language. The GE-jobManager has a complete vision of the whole session’s GE-Jobs state-space
and operates the further preparations when dependency constrains are matched.
The figure shows a typical GE-Job linking in a Task. The GE− Jobα has no dependencies so could be
Prepared immediately after the creation. The GE− Jobβ depends on GE− Jobα and its dependency

12 A new Grid Job Engine

Table 1: The checkPoint Table: Evolution of states between well defined stages.

CheckPoint Description value
1 JOB STATUS CODE UNDEFINED 0
2 JOB STATUS CODE INITIALIZED 20

3 JOB STATUS CODE REJECTED 21

4 JOB STATUS CODE PREPARING 22

5 JOB STATUS CODE PREPARED 23

6 JOB STATUS CODE REFUSED 24

7 JOB STATUS CODE SUBMITTED 25

8 JOB STATUS CODE TERMINATED 26

9 JOB STATUS CODE ABORTED 27

10 JOB STATUS CODE COMPLETING 28

11 JOB STATUS CODE COMPLETED 29

12 JOB STATUS CODE CORRUPTED 210

13 JOB STATUS CODE CLEANED 211

Figure 7: The GE-Job checkPoint sequence.

is related to reaching of COMPLETED status for GE− Jobα. It is the GE-Job that informs the

V.M. Fulcoli, R. De Prisco,....et alteris 13

GridEngine on the reached status. The states of GE− Jobα are traced on the state-space and the
same for GE− Jobβ till the achievement of next COMPLETED.

Figure 8: The GE-Job sequence in a Flow diagram.

Each GE-Job can be constrained by relations different from the COMPLETED achievement by its
binding one: for example you can bind the Preparation of the GE− Jobψ by the PREPARED for the
GE− Jobφ and by the TERMINATED for the GE− Jobχ. In this case when all the conditions of
binding are meet the next operation could take place. So we can define more typology of dependencies:

• Unitary, when a GE-Job depends on one different GE-Job;

• Multiple, when a GE-Job depends on more GE-Jobs;

• Simple, if the binding constraint is related to the correct completion of the preceding GE-Job;

• Partial, if the binding constraint is related to the reach of any of checkPoints for the preceding
GE-Job;

6 The GE Job splitting and the remote method invocation

To submit more than only one GE-Job you have to create all those you need and then submit them,
if these GE-Job are object of the same class you can use the splitting that optimize the memory and

Figure 9: The GE-Job chain sequence in the session Task. This is the case in which each GE-Job has
only one binding ancestor.

14 A new Grid Job Engine

Figure 10: The GE-Job chain sequence in the session Task. In this case it is shown a case in which
a GE-Job has more than one dependency.

resources leak. After the splitting of a splittable GE-Job we have several images (clones) of the source
object, each one is different upon variations of the sensible part. A GE-Job is splittable if it is possible
to istantiate more than only one GE-Job from a single source. Each clone has a common part with
the source GE-Job (the static part) and is different upon the sensible part.

Figure 11: The GE-Job chain sequence in the session Task. This is the case in which each GE-Job
has only one binding ancestor.

The GE-Job splitting is the following: we are going to analyze a GE-Job source composed by a sensible
part S for k GE-Job clones and m sub-elements. The sensible part is a set of elements S j. We will
have for each sensible part m elements as combination among all the elements of S j, with or without
repetitions as the GE-Job requires (the number m then could increase depending on the repetitions).
This mechanism is useful in the simple parallelization of GE-Jobs on the grid. The simple paral-
lelization arises when on CE’s we run k similar processes, clones with different IN-Boxes. Each clone
receives as input data to process a sub-set of the starting Data set. In the literature there are studies of
performances related to this parallelization scale, and for R.David, S.Genaud, A.Giersch, B.Schwarz,
E.Violard ”Source code transformations strategies to load-balance Grid applications” in the master-
slave case we have the minimal execution wait when each node has an input data that is inverse
proportional to its computing power. In a different approach we can use the belongings logic scale, it
describes levels to which an entity could belong and with whom it can communicate.
At the Task level we see entities communicate through a white board, shared-memory, that allows
tasks to post messages and data. This communication is between GE-Jobs of the same task or differen
one; these values have a global scope and can be viewed by all tasks Jobs. At the GE-Job level we

V.M. Fulcoli, R. De Prisco,....et alteris 15

Figure 12: The logic schema in communication and belonging for clones and GE-Jobs.

see of two kinds of communication: or on a white-board or through point-to-point channel between
GE-Jobs. The allocated shared-memory for the GE-Job level is accessible only for those GE-Jobs
belonging to the Task, so the visibility is restricted to the Task. A GE-Job posts messages or data on
the white-board for the Job level to spread unaddressed information related to its state. If it needs to
exchange sensible data about a defined GE-Job it uses the point-to-point channel that involves only
a 2 objects communication.
At the lower level, clone level, we have a communication with a LIFO white-board. The clone GE-
Jobs have visibility either for higher levels than for their own level in which intercommunication is
restricted to only those clones belonging to. The remote GE-Job method invocation is accomplished
at the GE-Job level. A meta program in the GE-Job logic language has the main GE-Job object from
which starts the whole elaboration that goes through functions performed either by itself than by
other objects. The meta program uses a general view at the creation time: in that view it is related
to the task a time-causal evolution. Each GE-Job of the task is a child of one or more parents and is
parent of one or more children. During its life a GE-Job can:

• create,

• execute a new GE-Job object in the GridEngine,

• then call on it a particular service,

• and then terminate it.

In a grid this is always possible, and there is a great difference with static services, like web-services.
The services offered by GE-Jobs are dynamic as regarding the resource exploitation, they can migrate
to different sites if the CE is overloaded. If web-services, as static services, have a responsivity
dependent upon their number (fixed) and upon host machines performance, the GE-Job respond to a
request grow with a re-creation in the grid, till satisfaction.

16 A new Grid Job Engine

7 A comparison of more competing technologies

To evaluate the project exposed (and the real tool yet built and operating at ESA in the EGEO
environment) is useful to make some comparisons between similar technologies, maybe belonging
to the same applicableness class. With a performance comparison we see clearly that we eliminate
waiting times due to repetitions of cyclic operations. A comparison with the gateWay-interface of the
grids, for example the egee User Interface 1 shows that the GridEngine is however more advanced
why it is built on egee-UI services and offers more refined and complex functionalities. Seeing the grid
activities panorama a correct comparison with this automation Job system (GridEngine and EGEO)
is unrealizable because this dual entity does not exist. So practical and formal evaluations are made
by measuring total elaboration waits, and a reduction of a factor 5 or 6 for the costs, operating with
a pool of low power computers (7 Dell OptiPex 150 + 1 Beowulf) respect one SiliconGraphics (SGI
Altix 4700), due of course to a different resource exploitation approach. A system that could be
a comparable term, not comprising all the characteristics, is the condor DAG-MAN 2. It has some
aspects resembling the GridEngine as regard the work sessions and Job-Flow. I want to emphasize
that our research was developed at the same time with DagMan. The DAG (Directed Acyclic Graph)
manager is responsible for the sequential execution of programs that need to be submitted to Condor.
It needs the list of programs to submit and the list of pre and post executions, a dependency description
and retry number for failure. This system is similar to the TaskFlow contained in the GridEngine, but
the GridEngine has different functionalities. The DagMan essentially is a dependency manager, the
GE is a gridization programs tool, that then monitors dependencies. DagMan furnishes a pre and a
post program for each Job. These auxiliary programs are added to the core program in order to be run
before and after the core execution. The core program is submitted to condor when constraints are
matched, as checked by dagMan, i.e. is executed the pre-program, then with a successful exit status
the post-program. The GridEngine has a dual with its Preparation and Completion that surround
the wrapper (Execution). In the GridEngine there is a further specialization concerning the start of
children GE-Job’s execution at well defined intermediate checkPoints reaching. This is for assuring
system a flow efficiency and inter-communication on 3 levels. It is the 2nd level communication that
allows progress in subsequent steps that can be more or less grained, grain that allows a GE-Job in
the task to start running not only at reaching by its parent (parents) of successful completion but at
reaching of some pre-defined checkPoints. This procedure has proved to be very useful in dealing with
Mosaic 2 Job project at ESA, in which clones can launch subsequent operations before they terminate
the whole data computation. In fact it could happen that a first data chunk if correctly elaborated is
ready for the next GE-Job, that for the mosaic operate an inter-correlation on available chunks. And
it is useful also on fault cases, during processing, when it does not preclude the task advance even if
it’s available only a portion of expected data, as intermediate elaboration result on not constraining
data (see fig. 13).

8 A real scenario for the GridEngine and future outlook

The EGEO in ESA is now an operational system, composed by:

• several grid middlewares,

• the GridEngine as GE-Job-Manager,

• a web-portal that introduces friendly the users onto grids having all capabilities to retrieve
metadata for data analysis.

EGEO is fine tuned for computation in the Earth Observation field and is capable of increase com-
putational power expressed by research applications. The main feature for EGEO is constituted by
its cache-like structure that support a continuous data processing. Often the not-functional features
of distributed applications, when measured and evaluated, are rather far away from those expected
because variables concerning the problem are many and rapidly varying. The presence of data-nodes

1http://egee.cesnet.cz/en/voce/ui.html
2http://www.cs.wisc.edu/condor/dagman/
2This Mosaic is a task made by 3 kind of GE-Job, as we will describe later.

V.M. Fulcoli, R. De Prisco,....et alteris 17

Figure 13: The advancing in steps during a task (Mosaic) viewed from a time point of view.

and computational-nodes lead to the arrangement search between data migration toward processes
or vice versa, in an intermediate point. To find the optimum between these extremal points is often
impossible a priori, so we need an investigation of the particular case in a run time way basing on
several parameters. For the connected-parallel and fully-parallel applications it is possible to reach
the minimal cost simply growing the number of CEs, in a theoretical approach it could be possible
to reach the lowest cost of only data transmissions on the network, but in practice the lower level is
reached before than that one predicted as a data transit cost.
The principal researchers need is the access to data, algorithm and distributed resources; the present
paper illustrates the research in that direction. Each application for the Earth Observation field
operates on a well defined data set: satellite and acquisition sensor, time and spatial interval of the
acquisition, orbit number, refinement operations type. With the exposed characteristics we identify
data set required by the computational algorithm, and the program itself has a precise identity when
regarded in the space of applications for the EO field.

• Each GE-Job is accessible to researchers, and it is identifiable by a parameter’s set;

• The products nomenclature that are available for users having rights.

EGEO in this sense does not only control data and algorithm distribution but manages the belonging
to users, or groups, or Virtual Organizations. In the light of what I said the gain is immediate for
the embarassing parallel applications in which a simple data redistribution on copies (of the original
program) running on free remote CEs resembles the Clones splitting.
When the user requests some data set elaboration through a computational algorithm, using the
EGEO, he starts a complex operation that begins with the request on a WEB GateWay interface: the
GridOnDemand web server. It manages the first step of the sequence chain of operations, having the
logic of traduction into data files set the time-spatial region covered by user. Then it translates into
a meta-description language,for the GridEngine, the way the user requests for those data elaboration
and sends it to the GridEngine. The GridEngine subdivides tasks basing on data to be processed:

• if they exist,

18 A new Grid Job Engine

• if they are available,

and does it checking on the Persistent-Catalog. Data found can be utilized by GE-Job through a
collection executed by GridEngine. The above pre task collection is a general purpose GE-Job: Collect,
that moves on the grid storage elements data found and then marks them (either with operational
than ontological attributes) as belonging to the particular session and defined GE-Job. When the
GE-Job is forwarded to the grid (if there is not a grid Resource Broker the GridEngine will manage
partially this feature) it becomes really a series of processes on computing elements; afterwards each
result (either for a partial result than for a final result) is registered on the Cache-Catalog. At the
chain’s end the GridEngine launches the GE-Job Publish: the final recollector of the whole result set
produced by intermediate GE-Jobs, that evaluates the Ge-Jobs successfully termination and

• moves products in the OUT-Data place for the final recovery step made by the user, or

• cancels and cleans the EGEO grid Cache.

The EGEO has several access points: one of these is the GridEngine Front-End.

Figure 14: The EGEO as appears when viewed from the net.

As an example of using the EGEO we analyze the Mosaic project. It is a task made by 3 different
sections:

1. Structure;

2. Tessera-Elaboration;

3. Recompilation;

The 1st and the 2nd piece can be splitted on sensible parameters:

• Structure[job[k] : k ∈ (1; ...L1)] where the upper limit L1 is given by graining.

• Tessera− Elaboration[job[k] : k ∈ (1; ...L2)] where the upper limit L2 is given by row data files
number.

On the Mosaic-Project there are 2 further GE-jobs, one of them is the GE-Job Collect that is a
general utility Job placed as first step of the chain. It collects files requested by user querying External

V.M. Fulcoli, R. De Prisco,....et alteris 19

Figure 15: The Collect GE-Job during the meta information traduction phase.

Persistent Catalog and registers the correct upload on grid storages. The OutputTable is registered
as output-result for this Collect Job, with attributes that identify sessionID and Name.
The Mosaic beginning part,i.e. the Structure, parses some request-parameters (the space part Interval
: the Bounding Box) in order to prepare the Mosaico-grained-Grid where to place the further tessera.
This step is a global geo-location. Then Structure parses the Collect’s Output Table (containg files
meta data), to identify on Cache Catalog if there are copies already processed for any region covered
by Space-Time interval of the present Mosaic. The central part of Mosaic project (the analysis and
tessera elaboration) follows the initial stage, the Structure (i.e. structural data creation either for the
geo-localization of input row data than for the geo-localization of result data).
Both pieces of Mosaic project (the Structure and the Tessera elaboration) can be composed by many
collaborating GE-Jobs: clones.
The communication intra-clones is managed by the GE-Job white-board that simulates a parallel pro-
cess communication, it is so specific for the computational application. The clone-clone communication
is offered by the GridEngine.
In the picture 21 are shown 2 Structure GE-Jobs [StructureA and StructureB] that are distinct compu-
tational applications and not clones. They operate in conjunction and need to exchange data between
themselves, because they do not stand at the logic level occupied by clones, they communicate through
the Session White-Board service offered by EGEO Volatile Catalog. It is possible then to think of
distributed applications interacting between themselves. Useful for that logic level is the GE-Job invo-

20 A new Grid Job Engine

Figure 16: .The MSS stands for Mass System Storage, generally constituted by batteries of tapes driven
by robots.

cation by another GE-Job: the Session White-Board stores meta data and on a GE-Job it is possible
to request the execution of a procedure that it offers.
When a GE-Job becomes an object, during the instantiation, it reaches its own space and operates
either for number crunching than for information dispatcher; so it arises a dynamic splitting of row
data. During the initial stage all files are found and the clones migrate onto Computational Resource
following a theoretical prediction, and then is the GE-Job that refines that prediction in a corrected
prosecution having checked the files that are nearest [here I mean nearest regarding the position in
the network space furnished of an inner metric: a metric normalized and inverse proportional to the
throughput] and have a less operating cost; and the GE-Job informs the Job White-Board about its
new set.
Each clone runs till clonej−th has interest to know if data-file to be computed (filek−th) is scheduled
by some other clone, if not it goes to elaborate.
Informs the GE-Job White-Board that the filek−th is being processed by clonej−th; but if there
happens a fault or an exception, it stops the current execution and asks for the prosecution another
GE-Job clone not heavily loaded: so calls the remote method on that cloney−th to control the load.
A low load response will followed by the sending of delegation request for elaboration. The Mosaic
Project is fault tolerant in the EGEO system.

V.M. Fulcoli, R. De Prisco,....et alteris 21

Now in ESA are available in the EGEO environment (aka GridOnDemand when integrated with the
web Portal) several GE-Job offered by scientific community by a team working at ESA, and in which
I am involved.
The number of scientific applications that as GE-Jobs utilize the EGEO system confirms the efficiency
of GridEngine.
The whole system has as a FrontEnd constituted by a web GateWay portal, hosting functionalities
offered by GridEngine, by underlying Grids, by Data Catalogues, by Mass Archive storage systems.
Through the portal the users can execute the Tasks listed in the Table 2, moreover it offers several
services made by the conjunct utilization of modern GeoInformation techniques and remote web
services.
The picture shows the first stage of operation chain. A Task where 4 GE-Jobs are linked to build an
operation-flow.
The picture shows the instantiation phase, automatized for different GE-Jobs making the Task.
In the figure we can see how the GE-Job number 1 of the chain is running and the subsequent are
waiting for its completion.

Figure 17: The Collect GE-Job: during upload of data the Collect registers values on Cache Catalog.

22 A new Grid Job Engine

Figure 18: The ingestion stage: from external storage system to the EGEO.

Figure 19: The ingestion stage: the Volatile Archive is the main component for the EGEO cache.

V.M. Fulcoli, R. De Prisco,....et alteris 23

Figure 20: The completion stage for GE-Jobs on the EGEO.

Figure 21: How in the EGEO appears the Mosaic project. The schema illustrates the Mosaic but many
tasks have a similar constitution.

24 A new Grid Job Engine

Table 2: The GE-Job Table: All available for the EGEO utilization through GridOnDemand gateWay.

BEAT BESTcalibration CNR Collect
Convert EnviProj eoDataViewer3 eog-binning2

gome meris GOMEvalidation GOMOS2L HDFconvert
IceContour idl HRIT Imager JRC
JRCconcat JRCregrid L3aggregation3 L3binning3

L3Jap L3sst L3tcamean3 MedComp
MerisFR0 MGVI JRC ModisSpatial ModisSST

mosaicCom3 N1Converter ObjAn old jobs
Publish RA2Raies remapMeris3 RiverLake2
TCAWT Vomir WarpImage WMSpublish
zBEST

Figure 22: The image captured during the browsing on Web Portal.

Figure 23: The instantiation phase.

V.M. Fulcoli, R. De Prisco,....et alteris 25

Figure 24: How the GE-Jobs constituting the chain operate in a linked flow.

Figure 25: How the in the EGEO the result are presented as Thumbnails and with the URL of their
complete product.

	Introduction
	The Grid and the status of the art
	A brief description
	The contribution of this research
	The GridEngine and the GE-Job
	The GE_Job_splitting and the remote method invocation
	A comparison of more competing technologies
	A real scenario for the GridEngine and future outlook

